مینڈک سب سے بائیں کنول کے پتے پر بیٹھتا ہے، ہر قدم اگلے پتے پر، یا ایک پتے کے فاصلے پر چھلانگ لگا سکتا ہے، لیکن پیچھے کود نہیں سکتا۔ پوچھیں کہ آخری پتے تک چھلانگ لگانے کے کتنے راستے ہیں، یہ جانتے ہوئے کہ قطار میں کمل کے 10 پتے ہیں؟
فبونیکی ترتیب 0 اور 1 سے شروع ہونے والے قدرتی نمبروں کی ایک ترتیب ہے، پھر اس ترتیب میں اگلا نمبر پچھلے دو نمبروں کا مجموعہ ہوگا: 0، 1، 1، 2، 3، 5، 8، 13، 21، 34، 55، 89، 144، اس کے بعد اس نمبر کا نام دیا گیا ہے۔ لیونارڈو فبونیکی، جسے لیونارڈو دا پیسا (1170 - 1240) کے نام سے بھی جانا جاتا ہے۔ انہیں قرون وسطیٰ کے عظیم ترین ریاضی دانوں میں شمار کیا جاتا ہے۔
فبونیکی ترتیب 1202 میں ان کی کتاب "لائبر اباسی" میں شائع ہوئی۔ اس میں، اس نے اس ترتیب کو دو کلاسک مسائل کے ذریعے متعارف کرایا: خرگوش کا مسئلہ اور نر مکھی کے "آباؤ اجداد" نمبر کا مسئلہ۔
آج کل، فبونیکی ترتیب نہ صرف ریاضیاتی ایپلی کیشنز میں بڑے پیمانے پر جانا جاتا ہے، بلکہ اس لیے بھی جانا جاتا ہے کہ اس کی بہت سی خاص خصوصیات ہیں اور اس کے بہت سے مختلف شعبوں جیسے فنانس، فن تعمیر، جیومیٹری اور کمپیوٹر سائنس میں وسیع اطلاقات ہیں۔
ہم اس سلسلے میں تفصیل سے نہیں جائیں گے۔ اگر آپ دلچسپی رکھتے ہیں تو، Google "Fibonacci Sequence" یا "Fibonacci Sequence" اور آپ کو Fibonacci تسلسل سے متعلق بہت سی دلچسپ چیزیں ملیں گی۔
یہاں ہمارے پاس اس ترتیب سے متعلق ایک دلچسپ مسئلہ ہے:
جھیل پر 10 کنول کے پتے ایک افقی قطار میں ترتیب دیے گئے ہیں۔ سب سے باہر کے پتے پر ایک مینڈک ہے۔
ہر قدم پر، مینڈک یا تو جس پتے پر کھڑا ہے اس کے ساتھ والے پتے کی طرف چھلانگ لگا دے گا یا اس پتے کو چھوڑ کر اگلے ایک پر جائے گا۔ مینڈک کبھی پیچھے کی طرف نہیں چھلانگ لگاتا ہے۔ مینڈک کتنے راستوں سے سب سے دائیں پتی تک چھلانگ لگا سکتا ہے؟
>>> جواب دیں۔
Vo Quoc Ba Can
ریاضی کے استاد، اچرمیڈز اکیڈمی، ہنوئی
ماخذ لنک
تبصرہ (0)