Что такое прямоугольник?
Согласно Уроку 13, Математика 8 (Том 1) серии учебников «Связь знаний с жизнью» издательства Vietnam Education Publishing House, прямоугольник определяется как четырехугольник с 4 прямыми углами.
Свойства прямоугольника таковы, что он имеет 2 параллельные противолежащие стороны, 2 равные противолежащие стороны, 2 равные противолежащие углы, 2 равные диагонали и пересекается в середине каждой линии.

Формула для вычисления площади прямоугольника
В уроке 52, математика, книга 3 (том 2) учебника серии «Связь знаний с жизнью» издательства Vietnam Education House, формула для вычисления площади прямоугольника — длина, умноженная на ширину (единая единица измерения).
S = axb |
Там:
S: Площадь прямоугольника
а: Длина прямоугольника
b: Ширина прямоугольника
Например: прямоугольная деревянная доска имеет ширину 5 см и длину 15 см. Рассчитайте площадь этой деревянной доски.
Ответ: Площадь деревянной доски равна: S = 5 х 15 = 75 ( см² ).
Формула вычисления площади прямоугольника, если известны одна сторона и одна диагональ.
Чтобы вычислить площадь прямоугольника, зная диагональ и одну сторону, необходимо объединить теорему Пифагора с основной формулой площади.
Шаг 1: Примените теорему Пифагора к прямоугольному треугольнику, чтобы вычислить длину оставшейся стороны.
Шаг 2: Применяем формулу для вычисления площади прямоугольника: S = axb
Например: прямоугольник ABCD имеет длину AD = 60 см, диагональ AC равна 100 см. Вычислите площадь прямоугольника ABCD.
Отвечать:
Шаг 1: Найдите оставшуюся сторону прямоугольника ABCD, используя теорему Пифагора в прямоугольном треугольнике.
Соответственно: AC2 = AB2 + AD2 => AB2 = AC2 - AD2 = 10000 - 3600 = 6400 => AB = 80 (см)
Шаг 2: Площадь ABCD = AB x AD = 60 x 80 = 4800 ( см² )
Формула вычисления площади прямоугольника, если известен его периметр.
Чтобы вычислить площадь прямоугольника, зная его периметр, необходимо объединить формулу периметра и основную формулу площади.
Шаг 1: Из формулы для вычисления периметра прямоугольника P = (a+b) x 2, где P — периметр, a — длина, b — ширина прямоугольника, получаем a = (P/2) - b или b = (P/2) - a
Шаг 2: Найдя a или b, примените формулу для вычисления площади прямоугольника: S = axb
Признаки, распознающие прямоугольник?
Согласно уроку 13 учебника по математике 8 (том 1) серии «Связь знаний с жизнью» издательства Vietnam Education Publishing House, признаки, по которым можно распознать прямоугольник, следующие:
- Четырехугольник имеет 3 прямых угла (согласно определению)
- Параллелограмм имеет 1 прямой угол.
- Параллелограмм имеет две равные диагонали.
- Равнобедренная трапеция имеет один прямой угол.
Является ли прямоугольник параллелограммом?
Согласно уроку 13 учебника по математике 8 (том 1) серии «Связь знаний с жизнью» издательства Vietnam Education Publishing, прямоугольник обладает всеми свойствами параллелограмма. Следовательно, прямоугольник является его особым параллелограммом.
Является ли прямоугольник равнобедренной трапецией?
Урок 13, Математика 8 (Том 1) из серии учебников «Связь знаний с жизнью» издательства Vietnam Education, прямоугольник обладает всеми свойствами равнобедренной трапеции. Следовательно, прямоугольник является частным случаем равнобедренной трапеции.
(Синтетический)
Источник: https://vietnamnet.vn/cong-thuc-tinh-dien-tich-hinh-chu-nhat-2445253.html
Комментарий (0)